close
PAN系碳纖維之製造方法:

          聚丙烯腈是製造碳纖維的主要原料,全世界生產碳纖維有百分之八、九十來自於聚丙烯腈,故聚丙烯腈之製造、抽絲及後續燒結過程-環化、碳化及石墨化等相當重要。

聚丙烯腈母材纖維之穩定化:

將聚丙烯腈母材纖維燒成高強度之碳纖維,中間過程必須經過一個重要的步驟即穩定化(stabilization),這處理過程之適當性影響後續燒結最終成品之碳纖維機械性質甚巨,故不得不慎重。穩定化過程係聚丙烯腈母材纖維在氧氣環境下;低溫狀況施以一定之張力做熱處理,這時聚丙烯腈纖維之化學結構發生變化,由原線性分子結構轉變為環狀之分子結構,其熔點亦隨著分子結構之不同而逐漸升高。穩定化過程通常是聚丙烯腈纖維在氧化氣流下空氣溫度範圍從180℃到300℃,控制加熱速度,一般為1~2/min,穩定化過程主要有三種反應:

(1)環化反應(Cyclization)。

(2)脫氫反應(Dehydrogenation)。

(3)氧化反應。

聚丙烯腈纖維進行穩定化過程中,纖維顏色一直在改變,由黃色、棕色、以至於最後之黑色。這種顏色變化象徵纖維內分子結構之改變,由聚烯(Polyene)結構到形成碳氮雙鍵(C=N)縮環之結構,即所謂梯形結構。這些反應過程中皆為放熱反應,脫氫及環化反應之放熱量分別為-242.67KJ/mole-58KJ/mole

   聚丙烯腈母材纖維在空氣中加熱,促使脫氫反應而造成雙鍵之形成,最後生成穩定之梯形分子結構。這穩定化過程主要受(1)在纖維上張力之變化(2)熱處理溫度(3)處理中之媒介(4)前穩定化處理等之影響。一般而言,在穩定化過程中,聚丙烯腈之附屬氰基群,首先交連成梯形高分子結構,此過程之起始反應是藉由少量活性之共聚合物像2-亞甲基丁二酸(Itaconic acid)來催化。在穩定化過程中,氧分子亦參與梯形高分子反應,因而出現幾個可能之梯形分子結構。聚丙烯腈纖維在經過環化反應及穩定化後,導致纖維大量之收縮,由於在長軸方向受到機械拉力而阻止收縮發生,但纖維之直徑因而減小。

聚丙烯腈母材纖維之碳化:

聚丙烯腈纖維在碳化過程中,已穩定化母材纖維碳纖維,其熱處理係在鈍氣及很小張力,溫度高至1500℃之下進行的。在這熱處理過程中所有的元素,除了碳元素外,幾乎以副產物之形式被消去而形成像石墨之結構。

在碳化過程中,加熱速度在兩個區域內控制甚嚴苛,第一個區域溫度高至600℃,加熱速度要很低(小於5/min),質傳(Mass Transfer)要緩慢,因在高的加熱速度下,快速之質傳會造成纖維因細孔之形成,使得表面不規則性。這區域控制嚴格之另一原因是此區域進行大部分化學反應及揮發性產物之蒸發,水氣蒸發是因梯形高分子鏈含氧群進行交鏈反應之故。第二個區域,溫度介於600℃到1500℃之間,使用較大的加熱速度係為了要減少纖維因放熱反應或副產物之揮發造成可能之傷害。這些反應在600℃下大部分已完成,在這加熱區域包含N2HCNH2等氣體產生,H2HCN係高分子鏈分子間交連反應之產物,氫氣之釋出係去氫反應之結果。

已穩定化分子鏈分子拉伸結構,聚丙烯腈纖維之纖維束在鈍氣中進行熱分解,非碳元素以揮發物(例如H2OHCNNH3COCO2NH3等)被除去而得到單純碳纖維,其產率大概是原來聚丙烯腈母材纖維之50%。碳化過程初期加熱速度相當慢,故揮發物之釋出並不損壞到纖維,大部分之揮發物在低於1000℃下皆已逃掉,僅剩少數氮元素(~6%)殘留著。

在碳化反應初期,溫度在400~500℃範圍,存在於已氧化聚丙烯腈內之氫氧基開始進行交連縮合反應,它能幫助已環化部分之重組與接合,此交連反應可固定高分子之結構,剩下之線性結構部分一則變成環化或進行鏈分裂而釋出氣體產物。這些已環化結構進行去氫反應,並在側面方向開始連接,產生側面方向由氮原子鍵結而成之三個六邊形組成之類石墨結構。

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 幻想背包客 的頭像
    幻想背包客

    焦糖只愛瑪琪垛

    幻想背包客 發表在 痞客邦 留言(0) 人氣()